## Infinite Series

## Anton 11.3

## Infinite series:

$$
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+\cdots
$$

How is a series different from a sequence?
Ex: $\sum_{k=1}^{\infty} \frac{3}{10^{k}}=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\cdots \rightarrow 1 / 3$

Does the series converge? To answer, we need to look at the sequence of partial sums:

## For our problem:

$$
\begin{aligned}
& s_{1}=\frac{3}{10}=.3 \\
& s_{2}=\frac{3}{10}+\frac{3}{100}=.33 \\
& s_{3}=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}=.333 \\
& \therefore\left\{S_{n}\right\}=0.3,0.33,0.333,0.3333, \ldots \rightarrow 0.333 \ldots=\frac{1}{3} \\
& \therefore \sum_{k=1}^{\infty} \frac{3}{10^{k}}=\frac{1}{3}
\end{aligned}
$$

## More formally:

Geometric Series: a series of the form

$$
\sum_{k=1}^{\infty} a r^{k-1}=a+a r+\underbrace{a r^{2}+a r^{3}}_{\frac{a r^{3}}{a r^{2}}=r}+\cdots \quad a \neq 0
$$

What do you do to each term to get the next term? mult by $r$
$r$ is called the common ratio.
Ex: $\quad \sum_{k=1}^{\infty}(-1)^{k+1}=1-1+1-1+1=1+\cdots$

$$
\left\{S_{n}\right\}=1,0,1,0,1,0, \cdots \rightarrow \text { Diverbes } \Rightarrow \sum(-1)^{k+1} \text { Diverres }
$$

Identify $a$ (the first term) and $r$ (the common ratio):


When do you think a geometric series will converge?

Convergence of a Geometric Series:
A geometric series will converge if $|r|<1$.
If the geometric series converges, then the sum is:

$$
\sum_{k=1}^{\infty} a r^{k-1}=\frac{a}{1-r}
$$

A geometric series diverges if $|r| \geq 1$

## Some other examples:

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{5}{4^{k-1}} & =5+\frac{5}{4}+\frac{5}{4^{2}}+\cdots \\
a & =5 \quad \text { conv. since } \\
r & =1 / 4
\end{aligned} \quad \text { |rk } \quad \text {. }
$$

$$
\text { sum }=\frac{a}{1-r}=\frac{5}{1-1 / 4}=\frac{5}{3 / 4}
$$

$$
=\frac{20}{3}
$$

## Harmonic Series

$$
\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

Does this series converge?


## Some other examples:

$$
\begin{aligned}
& \left.0 . \overline{7}=\frac{7}{10}+\frac{7}{100}+\frac{7}{1000}+\cdots=\frac{7 / 10}{1 \sim 11_{10}}=\frac{7 / 10}{9 / 10}=7\right\}_{9} \\
& a=2 / 10 \text { conv. since } \\
& r=1 / 10 \quad|r|<1 \\
& \begin{array}{cc}
3 . \overline{62}=3+\underbrace{\frac{62}{100}+\frac{62}{100^{2}}+\frac{62}{100^{3}}+\cdots} & \frac{a}{1-r}=\frac{621100}{1-11100}=\frac{62}{99} \\
a=62100 & \begin{array}{l}
3 \frac{62}{99}
\end{array} \\
r=11100 &
\end{array}
\end{aligned}
$$

## Telescoping Series - an example

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\frac{1}{1.2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots \rightarrow 1 \\
& \sum \frac{1}{k}+\frac{-1}{k+1}=\left(1-y_{2}\right)+\left(y_{2}-11 / 3\right)+(y / 3-14 y)+\cdots
\end{aligned}
$$

Telescoping Series - the terms will only cancel out if they are getting smaller.

| Homework: |
| :--- |
| Anton 11.3 \# 3-29 odd |
|  |
|  |

