Infinite Series

Anton 11.3

A sequence of <u>partial sums</u>, $\{S_n\}$, is defined as:

$${S_n} = S_1, S_2, S_3, \dots$$
 where

$$S_1 = a_1$$

$$s_2 = a_1 + a_2$$

$$S_3 = a_1 + a_2 + a_3$$

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

Infinite series:

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots$$

How is a series different from a sequence?

Ex:
$$\sum_{k=1}^{\infty} \frac{3}{10^k} = \frac{3}{10} + \frac{3}{10^2} + \frac{3}{10^3} + \cdots \rightarrow 1/3$$

Does the series converge? To answer, we need to look at the sequence of <u>partial sums</u>:

For our problem:

$$s_1 = \frac{3}{10} = .3$$

$$s_2 = \frac{3}{10} + \frac{3}{100} = .33$$

$$s_3 = \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} = .333$$

$$:: \{S_n\} = 0.3, 0.33, 0.333, 0.3333, \dots \rightarrow 0.333... = \frac{1}{3}$$

$$\therefore \sum_{k=1}^{\infty} \frac{3}{10^k} = \frac{1}{3}$$

More formally:

Let $\{S_n\}$ be a sequence of partial sums of Σa_k .

If $\{S_n\} \rightarrow L$ then $\Sigma a_k = L$

If $\{S_n\}$ diverges then Σa_k diverges.

Ex:
$$\sum_{k=1}^{\infty} (-1)^{k+1} = |-|+|-|+|-|+\cdots$$

 $\sum_{k=1}^{\infty} (-1)^{k+1} = |-|+|-|+|-|+\cdots$
 $\sum_{k=1}^{\infty} (-1)^{k+1} = |-|+|-|+|-|+\cdots$
Diverses \Rightarrow

Geometric Series: a series of the form

$$\sum_{k=1}^{\infty} ar^{k-1} = a + ar + ar^2 + ar^3 + \cdots$$

$$\frac{ar^3}{ar^3} = a + ar + ar^3 + \cdots$$

$$a \neq 0$$

What do you do to each term to get the next term? MUT BY T

r is called the *common ratio*.

Identify a (the first term) and r (the common ratio):

$$\sum_{k=1}^{\infty} 2^{k-1} = 1 + 2^{k} + 2^{k} + \cdots$$

$$\sum_{k=1}^{\infty} \frac{3}{10^{k}}$$

$$\sum_{k=1}^{\infty} \frac{3}{10^{k}}$$

$$\sum_{k=1}^{\infty} \left(-\frac{1}{2}\right)^{k} = \left(-\frac{1}{2}\right)^{k} + \left(-\frac{1}{2}\right)^{k} + \left(-\frac{1}{2}\right)^{k} + \cdots$$

$$0 = -\frac{1}{2}$$

$$\sum_{k=1}^{\infty} \left(-\frac{1}{2}\right)^{k} = \left(-\frac{1}{2}\right)^{k} + \left(-\frac{1}{2}\right)^{k} + \left(-\frac{1}{2}\right)^{k} + \cdots$$

$$0 = -\frac{1}{2}$$

When do you think a geometric series will converge?

Convergence of a Geometric Series:

A geometric series will **converge** if |r| < 1.

If the geometric series **converges**, then the sum is: $\underline{\circ}$

$$\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}$$

A geometric series **diverges** if $|r| \ge 1$

Some other examples:

$$\sum_{k=1}^{\infty} \frac{5}{4^{k-1}} = 5 + \frac{5}{4} + \frac{5}{4^2} + \cdots \qquad \text{sum} = \frac{a}{1-r} = \frac{5}{1-1/4} = \frac{5}{2\sqrt{4}}$$

$$a = 5 \qquad \text{cmu. since}$$

$$1 = 1/4$$

$$\sum_{k=1}^{\infty} \frac{3}{(-7)^{k+1}} = \frac{3}{(-7)^{2}} \frac{3}{(-7)^{3}} + \dots \qquad \text{sum} = \frac{3|_{49}}{|_{1}+1|_{7}} = \frac{3|_{49}}{5|_{7}} = \frac{3}{49} \cdot \frac{7}{8}$$

$$A = \frac{3|_{49}}{|_{1}+1|_{7}} = \frac{3|_{49}}{5|_{7}} = \frac{3}{49} \cdot \frac{7}{8}$$

$$Conv. Since$$

$$C = -1/7 \qquad |_{1}+1|_{1}$$

Some other examples:

$$0.7 = \frac{7}{10} + \frac{7}{100} + \frac{7}{1000} + \cdots = \frac{7|10}{|-1|10} = \frac{7|10}{9|10} = \frac{7|10}{9|10}$$

$$0.7 = \frac{7}{10} + \frac{7}{1000} + \frac{7}{1000} + \cdots = \frac{7|10}{|-1|10} = \frac{7|10}{9|10} = \frac{7|10}{9|1$$

$$3.\overline{62} = 3 + \frac{62}{100} + \frac{62}{100^{2}} + \frac{62}{100^{3}} + \cdots \qquad \underbrace{\frac{a}{1-r}}_{1-r} = \frac{62(100)}{1-1(100)} = \frac{62}{99}$$

$$A = \frac{62(100)}{1-1(100)}$$

$$T = \frac{101}{100}$$

$$3\frac{62}{99}$$

Harmonic Series

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

Does this series converge?

Telescoping Series – an example

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \frac{1}{12} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots \rightarrow 1$$

$$\sum \frac{1}{|k|} + \frac{-1}{|k+1|} = (1 - |k|_2) + (|k|_2 - |k|_3) + (|k|_5 - |k|_4) + |k|_4$$

Telescoping Series – the terms will only cancel out if they are getting smaller.

Homework:

Anton 11.3 # 3 - 29 odd