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Anton 11.3

Infinite Series

Infinite series:
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How is a series different from a sequence?
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Does the series converge?  To answer, we need to look 
at the sequence of partial sums:  

A sequence of partial sums, {Sn}, is defined 
as: 
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For our problem:
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More formally:

Let {Sn} be a sequence of partial sums of ak .

If {Sn}L then ak = L

If {Sn} diverges then ak diverges.
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What do you do to each term to get the next 
term?

r is called the common ratio.

Geometric Series:  a series of the form
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Identify a (the first term) and r (the common 
ratio):
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When do you think a geometric series will 
converge?
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Convergence of a Geometric Series:

A geometric series will converge if r< 1.

If the geometric series converges, then the sum 
is:

A geometric series diverges if r 1
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Some other examples:
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Some other examples:
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Harmonic Series
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Does this series converge?
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Telescoping Series  an example
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Telescoping Series  the terms will only cancel 
out if they are getting smaller.
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Homework:

Anton 11.3 # 3 – 29 odd


